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The problem of stabilizing linear systems whose parameters which are known with a finite accuracy (robust stabilization) is 
considered. Optimal control methods, which enable one to obtain positional solutions of special auxiliary optimal control problems, 
are used to construct bounded stabilizing feedbacks. The implementation of the proposed stabilization methods depends very 
much on the capabilities of modern computational technology. The results are illustrated by taking the robust stabilization of 
third- and fourth-order dynamical systems as examples. © 1999 Elsevier Science Ltd. All rights reserved. 

In the majority of  papers which have been published on robust stabilization, either the structure of the 
stabilizing feedback is specified, constraints on the stabilizing actions are ignored or both of these apply 
at the same time. It is clear that artificial constraints on the structure of the feedbacks and the neglect 
of  geometric constraints on the control are hardly in accord with present-day requirements for control 
systems. A method for stabilizing deterministic systems using optimal control theory was therefore 
proposed in [1, 2] in which the above-mentioned requirements are fully taken into account. The aim 
of this paper  is to extend this method to the problem of  robust stabilization. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider a dynamical system, the behaviour of which, when t I> 0, is described by the equation 

J¢ = Ax  + bu (1.1) 

(x, b G R n, u ~ R, A ~ R nxn, rank(b, Ab . . . . .  An-nb) = n) 

wherex  = x(t)  is the n-vector of the state of  the system at the instant of time t and u = u( t )  is the value 
of  the scalar control. 

We assume that the available information on the system parameters A and b is inexact: the n x n 
matrixA and the n-vector b are such that 

A = A o + A A ,  b = b o + A b  

where A0, b0 are the known n x n matrix and the n-vector, respectively, and AA, Ab are the unknown 
n x n matrix and the n-vector which satisfy the equations 

IIAAII ~< or, IIAbll ~< I] (or, I~ > 0) 

Suppose G is a bounded neighbourhood of the equilibrium state x = 0 of system (1.1) and u = 0. 
For a fixed ~ > 0 and fixed numbers v > 0, L > 0, we call the function 

u(t, x), x e  G,  t ~ [0, v[ (1.2) 

the bounded robust stabilizing preset-position control (PPC) of system (1.1) in the domain G if 

1. u ( t , 0 ) = 0 ,  m [0, v[; 

2. lu ( t , x ) l<~L,  x G  G, t ~  [0, v[; 

3. the trajectory of  the closed system 

k = A x + b u ( t , x ) ,  x ( 0 ) = x  0, x o 6 G  (1.3) 
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is a continuous solution of the equation 

J¢ = Ax  + bu(t) ,  x(O) = x o 

when u( t )  = u ( t  - k v ,  x ( k v ) ) ,  t ~ [kv, (k  + 1)v[, k = 0, ] . . . .  ; 
4. system (1.3) is asymptotically stable in G whenA -A0,  b -- b0; 
5. a number t(e) > 0 exists such that each solution x( t ) ,  t >~ 0 of system (1.3) satisfies the conditions 

II x ( O  II ~< ~, I> t(~). 
The explicit (formula) construction of the stabilizing function (1.2), which satisfies the above- 

mentioned requirements in the case of a sufficiently large domain G, is outside limits of the possibilities 
of the mathematical methods used in modern control theory. The aim of the following exposition is 
to show that a roundabout method of individual robust stabilization exists, which is based on 
computational techniques. The basic idea behind the proposed method consists of the introduction of 
an auxiliary (associated) optimal control problem, the construction of a preset-positional solution for 
this problem, proof of the stabilizing properties of this solution and the realization of the preset-positional 
solution of the associated problem using an optimal regulator. It will be shown that an algorithm for 
the operation of the optimal regulator, which is executed using modern microprocessors, can be obtained 
for quite complex systems and that the signals which are generated by the regulator achieve robust 
stabiliztion. In this paper, this regulator is therefore called the stabilizer. 

2. THE ASSOCIATED OPTIMAL CONTROL PROBLEM. THE 
STABILIZING PROPERTY OF OPTIMAL FEEDBACK 

We choose the natural numbers N, m (N > m > n) and the real number h > 0 and suppose that 
v = m h ,  O =Nh.  

We shall call a piecewise-constant function u(t) ,  t ~ T = [0, O]: u(t )  = uj, t ~ [(j - 1)h, jh[ ,  j = 
1, 2 . . . .  , Nwhich satisfies the constraint [ u(t )  I <- L ,  t ~ T, an accessible control. 

We shall say that an accessible control u(t) ,  t ~ T is permissible for a state z ~ R n if the trajectory 
x( t ) ,  t ~ T of the system 

= Aox + boU, x(0) = z 

satisfies the condition x(O) = 0. 
We shall evaluate the quality of a permissible control using the value of the functional 

p(u) = max ! u(t)  I 
tE[O,O] 

A permissible control u°(t)  = u°(t  [z), t ~ T is referred to as the optimal program control for a state 
z ~ R n if the quality criterion attains the minimum value p(u °) = min p(u) in it, where the minimum 
is taken over all permissible controls. 

The optimal program is therefore the solution of the problem 

p(z) = rain p (2.1) 

:c = Aox  + bou, x(O) = z 

x ( O ) =  0, lu(t)l ~< p, t E T 

We shall assume that the condition 

rank(bob, Aohbo~ . . . . .  A~lbo, ) = n 

/ / A0h =expAoh, bob = bol  expsAods  
o 

is satisfied in the case of problem (2.1). 
The optimal starting preset-position control (PPC) is defined by the equality 

(2.2) 

u°(t,z) = u°(t I z), t E [O,v[, z e R ~ 



Robust stabilization of dynamical systems by means of bounded controls 723 

We now introduce the set 

G e = { z e R  n : lu°( t , z ) l<~ L,t e[0,v]} 

It possesses the property: a O > 0 exists for any e > 0 such that all states of system (1.1) which can be 
transferred by permissible controls to the origin of coordinates after a finite time are contained in an 
e-neighbourhood of the set Go. 

We shall show that, for specified e, G, a, 13 and an appropriate choice of the parameters O > 0, 
v > 0, h > 0 of problem (2.1), the feedback 

u( t , x )=u°( t , x ) ,  x ~ G  e,  t~[0,v[ 

will satisfy all the requirements for determining a bounded robust stabilizing PPC with G = Go. 
The properties listed below follow from the definition of the starting PPC: 
1. u(t, O) - O, t e [0, v[; 
2. In(t, x)l ~< L, x e G, t • [0, v[; 
3. the trajectory of the closed system (1.3) when u(t, x) = u°(t, z) is the continuous solution of the 

system of equations 

:c = AoX + bou°(t), x(O) = x o 

u°(t) = u°(t - kv, x(kv)), t ¢ [kv,(k + l)v[, k = 0,1 .... 

where u°(t - kv,  x(kv))  = u°(t - kv  Ix(kv)), t e [0, v[; u°(t [x(kv)), t e [0, O] is the optimal preset control 
of problem (2.1) for the state z = x(kv). 

We shall show, by the method of Lyapunov functions [3, 4], that system (1.1) whenA ---A0, b - b0, 
that is, the system 

J¢ = AoX + bou°(t,x) (2.3) 

is asymptotically stable in Ge. 
The optimum value of the performance criterion (PC) p(z), z e Go of problem (2.1) is taken as 

a Lyapunov function. Suppose that, at an arbitrary actual instant of time x = Iv, system (2.3) is in 
a state x*(x Ix~) which corresponds to an arbitrary initial state x(0) = x~,x/; e Go. In the actual state 
x*(x Ix~), the PC of problem (2.1) takes the value p(x*(x Ix~)), which is calculated by solving (2.1) with 
z = x*(~ Ix/;). 

Using Cauchy's formula, we eliminate the variable states from problem (2.1) and write it, taking 
account of the class of permissible controls used, in the equivalent functional form 

p --~ mm (2.4) 
N jh 

Fo(O)x*('clx~)+ E uj ~ Fo(O-t)bodt=O 
j=l (j-Dh 

lUjI~ p, j =  1,2 .. . . .  N 

Here, Fo(t), t >- 0 is the fundamental matrix of the solutions of the homogeneous system .~ = A0x 
(Fo = AoFo, Fo(0) = E). 

We now reduce problem (2.4) to another equivalent problem of linear programming by introducing 
the new variables ~ = l/p, ~j = uj/p, j = 1, 2 . . . . .  N 

~ max (2.5) 

N jh 
Fo(O)x'('cax~)~o + Z ~j I Fo (O- t )bod t=O 

i=1 (j-;)h 

~o~>0, l~jl~l, j = l ,  2 ..... N 

The following notation is used: t°(.) -- (~y°(x), j = O, 1 . . . . .  N) is the optimal plan and K°(x) is the 
optimal support [5] of problem (2.5). The optimal control of problem (2.4) will then take the form 
uO(.) = g/ o,j = 1 , 2  ..... N). 
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At the instant of time x + v, system (2.3) under the action of the control u~x) , j  -- 1, 2 . . . . .  m is in 
the state 

I Fo(V - t)bo dt 
j = l  (j-I)h 

In the case of the state z = x*(x + v lx~), the PC of problem (2.1) takes the value p(x*(z + v [x~)). 
The inequality 

° ° * 
p(x (~ + v I Xo)) < p(x (x I x;)) (2.6) 

holds. 

In fact, the control u, + v(') = (u ° + ,n(T), j = 1, 2 . . . . .  N - m; u~ = 0, j = N - m + 1, N - m + 
2 , . . . ,  N) is a permissible control for the state z = x*(T + v Ix~)) and the PC of problem (2.1) for this control 
satisfies the inequality 

~x*(~ + v lx~)) ~ p(x*(~ I x~)) (2.7) 

This means that inequality (2.7) will also be satisfied for the optimal control u ° + v(.). 
We now consider problem (2.5) in the interval [x, x + v] for the state x*(x + v ]x~) (Problem A). 
The set ~- = ( ~  = ~°(x), ~[ = ~x ) , j  = 1, 2 . . . . .  N, ~,  j = N + 1, N + 2 . . . . .  N + m) is a plan of problem A 

for which the value of the PC is equal to ~ = ~o(x). 
We now construct a new support K,(x + v) of problem A using the optimal support K°(x) of problem (2.5). The 

optimal plan (~-, Ks(x + v)] is non-degenerate. It is indispensable to find the non-zero estimates among the estimates 
Aj, j = N + 1, N + 2 . . . . .  N + m since the identity A: -- 0,j = N + 1, N + 2 . . . . .  N + m contradicts condition 
(2.2). The inequality ~°(x + v) > ~o(x) will therefore be satisfied for the optimal plan of problem A. This means 
that inequality (2.6) holds. 

Using inequality (2.6), it can be shown that p(x*(t Ix~)) ~ 0, II x*(t  Ix~) I[ ~ 0 when t ~ pp. 
We will now prove property 5 for determining the bounded robust stabilizing PPC. 
The arbitrary actual instant of time x = lv and the state x*(x)  = x*(xLx*0) of system (1.1), which 

corresponds to an arbitrary initial state x(0) = x~, x~ e Go and which has been realized by the values 
A*, b* of the parametersA and b of system (1.1), are now considered. 

We introduce the sets 

X v = x ¢ R n : x(v) = F(v)x*('~ I x¢~) + ] F(v- t)bu°(t I x*(¢))dt, ll llc , 
o 

X o = x ¢ R n : x(O) = F0(O- v)x(v) + I F0(O- t)bou°( t I x°('O) dt 
V 

{ o 
Xo = x ¢ R ~ : ~ ( v ) x  + l Fo(V- t )bou( t )d t=O,  l u ( t ) ~ p ,  t ~ [ 0 , ~ }  

V 

where F(t) ,  t >I 0 is the fundamental matrix of the solutions of the homogeneous system x = Ax. 
The minimum value of p, for which the condition X0 D Xo is satisfied, is denoted by p*. 
Suppose that, for a state x*(x Ix~), the optimal value of the PC of problem (2.1) with z = x*(x~x~) 

satisfies the inequality p(x*(xlx~)) > 0". We denote by u~(.) = (u~(x) = u~x*(x lx~)  = ~)'/~, 
j = 1, 2 . . . . .  N) the optimal plan of problem (2.4) with z = x*(xlx~), and by {~(.) = ({~, j  = O, 
1 , . . . ,  N) and/~(x)  the optimal plan and optimal support of problem (2.5), respectively, corresponding 
to the initial state z = x*(~ Ix~). 

At the instant of time z = x*(x Ix~), the closed system (1.3) is in the state 

j = l  ( j - I ) h  

for which the PC of problem (2.1) takes the value p(x*(x+v)). 
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The inequality 

holds for all x*(x)  for which 

p(x*(x+v))<p(x*(~)) (2.8) 

P(X'(X)) > P* (2.9) 

Actually, according to the definition of the number p*, a control v (t), ] v (t) I ~< P*, t e [x + 0 ,  x + 
@ + v[ exists such that the control U~+v(*) = (u~ + m(X),j = 1, 2 . . . .  , N - m ,  Uj°(x) = Vj-N+m, is a permissible 
control for problem (2.4) with an initial state z = x*(x + v) and the inequality 

max luj(x+v)l<~M 
j=I,2,....N 

( m a x  'Uj_N+m(T,)' I M = max M °, j=N-ra+l. N-ra+2.....N 

M ° = max I u °(x) l 
j=l,2....,N-m 

is satisfied for it. 
The inequality 

p(x*(x+v))= max lu° fx+v) l~M ° 
j=I.2.....N 

will be satisfied for the optimal control u°x + v(.). 
Since M -- 340 -- p(x*(x)), the non-strict inequality (2.8) follows from this. 
It follows from the inequality (2.9) that the optimum value of the performance criterion is determined 

by the minimum intensity of  the control u°i(x), j = 1, 2 . . . . .  N - m which is constructed according to 
the deterministic problem. Inequality (2.81 for the state x*(x + v) therefore follows from the proof  of 
Property 4 in the determination of the stabilizing preset-position control. 

Using the definition of  the set Xo, it can be shown that for any bounded numbers ct, 13 > 0 and 
any number el > 0 which may be as small as desired, numbers v > 0, O > 0 can be found such that 
IIx(t) II ~<el fo rx  e Xe. 

Consequently, O > 0, v > 0, t l(e) can be chosen such that the Lyapunov function p(x), x e G will 
decrease along the trajectories of system (1.3) for all states which lie outside an e-neighbourhood, which 
may be as small as desired, of the equilibrium state x = 0 and II x(t) II ~< ~ when t I> tl(e). 

3. AN A L G O R I T H M  F O R  T H E  O P E R A T I O N  
OF T H E  O P T I M U M  S T A B I L I Z E R  

Prior to the functioning of the system at the instant of time x = 0, the stabilizer constructs the optimal 
preset control u°( . )  of  problem (2.1) for the state z = x~. This can be done, for example, by the methods 
of  linear programming [5], since all the elements of the problem are known. If the statex~ is previously 
unknown but the domain in which it can appear is known, then this domain can be covered with a finite 
net and problem (2.1) can be solved in advance at the mesh points of this net. The solution at the instant 
of  time x = 0 for the statex~ which has been realized is obtained by correction of one of the solutions 
obtained using the method described below for arbitrary x. 

We assume that the stabilizer works at the instants of time 0, v . . . .  , (l - 1)v and, at the instants of 
time x = lv, system (1.1) is found to be in the state x*(x). By assumption, the stabilizer already knows 
the solution of problem (2.1) at the instant of time x - v. This problem is equivalent to a problem in 
linear programming (Problem S) which differs from problem (2.5) solely in the vector of conditions 
accompanying the variable ~0, and this difference is smaller the smaller the value of v. 

In order to work out the control u*(t), t ~ [x, x + v[, it is necessary that the stabilizer knows the 
solution of problem (2.1) with the initial condition z = x*(x),  that is, the solution of  problem (2.5). 

According to the theory of linear programming [6], the dual method is the most effective for solving 
Problem S since, in this case, the optimal support K~s(x) of problem (2.5) is constructed after a 
small number of iterations and the optimal support K~s (x - v) of problem S is taken as the initial support. 
If the time required b y t h e  specific computer to construct, at the instant of time x, a new support K~s 
(x) using the support/~s(X - v) already constructed at the preceding instant of time x - v, is less than 
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v, it can be  said that,  in the case of  the p rob l em considered,  the robust  stabilizing feedback  (1.2) can 
be  real ized in real  t ime using the chosen computa t iona l  device [7, 8]. Since, within the  f r a m e w o r k  of  
l inear  p r o g r a m m i n g  methods ,  the d imensions  of  p rob l em S are not  large, while the opera t ing  speed  of  
p resen t -day  mic roprocessors  is very high, the me thod  of  stabilization which has been  descr ibed can be 
used  in the case o f  dynamical  systems of  quite high order.  

4. E X A M P L E S  

As the first example we will consider the problem of the damping, by bounded piecewise-continuous controls, 
of the oscillations in a two-mass system (Fig. 4). 

The mathematical model of such a system has the form 

XI = X3, "~2 = X4 

J:3 = (-ClXl +c2x2 +u)lm,  :~4 = (ClXl - (c l  +c2)x2) lM 

(4.1) 

where m and M are the masses of the objects, cl and c 2 are the coefficients of elasticity of the springs and u is the 
damping action. 

Suppose that, at the initial instant of time t = 0, the system under consideration is found to be in a state 
xl(0) = 0.5,x2(0) = 0.4,x3(0) = 0.2,x4(0) = -0.1. It is required that the oscillations of the system should be quenched. 

The robust stabilizer was calculated for the following nominal values of the system parameters: m0 = 1, 
M = 10, ca0 = 1, c20 = 9.2. It was assumed in the calculations that O = 8, v = 2, h = 0.2. 

In this case, the associated problem has the form 

p --~ min 

"~1 = X3, "i:2 ---- X4 

ic 3 = - x  I + 9 , 2 x  2 +u ,  ,~4 = 0 , 1 X l -  1,02x 2 

, , iii  * 

x,(O) = xl (x), x2(O) = x2(x), x3(O) = x3(x), x4(0)  = x4(x)  

x~(O) = 0, x 2 ( e )  = O, x3(O)  = 0, x 4 ( 0 )  = 0 

l u ( t ) l~p ,  t e  T = [ 0 , O ]  

where x*(x) * * * * = (x a(x), x z(x), x 3(x), x 4(x)) is the state of system (4.1) at the actual instant of time 3. 
The following values of the system parameters were realized during the operation of the stabilizer: 
1. the coefficient of elasticity, ci, of the upper spring (Fig. 2) was varied (the dashed curves correspond to 

the nominal value c10 = 1 and the solid curves 1 and 2 correspond to the realized values of c] = 0.9 and 
c~ = 1.1); 

2. the coefficient of elasticity, cz, of the lower spring (Fig. 3) was varied (the dashed curves correspond to the 
nominal value c20 = 9.2 and the solid curves 1 and 2 correspond to the realized values c~ = 8.28 and c~ = 10.12); 

3. the mass m of the upper point (Fig. 4) was varied (the dashed curves correspond to the nominal value 
m0 = 1 and the solid curves 1 and 2 correspond to the realized valu.es of m* = 0.9 and m* = 1.1). 

As a second example, we will consider the problem of the stabilization of a mathematical pendulum in an upper 
unstable equilibrium position [9] (Fig. 5). 

The mathematical model of such a system has the form 

• ~l = x 2 ,  .~2 =x ,  +x3,  i3 = u  (4.2) 

wherexl is the angle of inclination of the pendulum from the vertical, x2 is the angular velocity of the pendulum 
andx3 is the moment applied to the pendulum. 

At the initial instant of time t = 0, system (4.2) was in the statexl(0) = 0.3,x2(0) = 1.0,x3(0) = -1.2. It is required 
to stabilize it in the upper vertical position xa = 0, x2 = 0, x3 = 0. 

The associated problem has the form 

p --+ min 

Jq =x2,  x2 =Xl +x3, x3 =u 

xl (0) = xl (X), x2(0) = x2(X), x3(O) = x3(x) 

x l (O)=O, x2(O)=O, x3(O)--0 

I u(t)  I~p, t ~ T = [0,O] 

where x*(x) = (x*I(T),  x'2(17), x'3(17)) is the state of system (4.2) at the actual instant of time ~. 
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The following parameters of the method were chosen to solve the associated problem 

O = 1 ,  h=0.025, v = 5 h  
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The following values of the system parameters were obtained during the operation of the stabilizer: 
1. the coefficient of xl was varied (Fig. 6) (the dashed curves correspond to a nominal value of lx I and the solid 

curves 1 and 2 correspond to the realized values of 0.5xl and 1.5x0; 
2. the coefficient ofx3 was varied (Fig. 7) (the dashed curves correspond to a nominal value of Ix 3 and the solid 

curves I and 2 correspond to the realized values of 0.5x 3 and 1.5x3), 
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